Transcription termination signals in the nin region of bacteriophage lambda: identification of Rho-dependent termination regions.

نویسندگان

  • S W Cheng
  • D L Court
  • D I Friedman
چکیده

The approximately 3-kb nin region of bacteriophage lambda, located between genes P and Q contains transcription termination signals as well as 10 open reading frames. Deletions in the nin region frees phage growth from dependence on the lambda-encoded N-transcription antitermination system, conferring a Nin phenotype (N-independence). A subregion of nin, roc, is defined by a 1.9-kb deletion (delta roc) which partially frees lambda growth from the requirement for N antitermination. The roc region has strong transcription termination activity as assayed by a plasmid-based terminator testing system. We report the following features of the roc region: the biologically significant terminators in the roc region are Rho dependent, deletion analysis located the biologically significant termination signals to a 1.2 kb-segment of roc, and analysis of other deletions and point mutations in the roc region suggested at least two biologically significant regions of termination, tR3 (extending from bp 42020 to 42231) and tR4 (extending from bp 42630 to 42825).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for transcription antitermination control of tryptophanase operon expression in Escherichia coli K-12.

Tryptophanase, encoded by the gene tnaA, is a catabolic enzyme distinct from the enzymes of tryptophan biosynthesis. Tryptophanase synthesis is induced by tryptophan and is subject to catabolite repression. We studied the mechanism of tna operon induction. Mutants with altered rho factor were partially constitutive for tna expression, implicating rho-dependent transcription termination in the c...

متن کامل

Mutations in the ATP-binding domain of Escherichia coli rho factor affect transcription termination in vivo.

Five mutant rho proteins, representing alterations at three different locations in the Escherichia coli rho gene that affect ATP hydrolytic activity but not RNA binding, were examined in vivo for function at the rho-dependent IS2 and bacteriophage lambda tR1 terminators. The altered amino acids in rho are located at highly conserved residues near the beta 1 and beta 4 strands of the hydrophobic...

متن کامل

A multipronged strategy of an anti-terminator protein to overcome Rho-dependent transcription termination

One of the important role of Rho-dependent transcription termination in bacteria is to prevent gene expressions from the bacteriophage DNA. The transcription anti-termination systems of the lambdoid phages have been designed to overcome this Rho action. The anti-terminator protein N has three interacting regions, which interact with the mRNA, with the NusA and with the RNA polymerase. Here, we ...

متن کامل

RNA secondary structures regulate three steps of Rho-dependent transcription termination within a bacterial mRNA leader

Transcription termination events in bacteria often require the RNA helicase Rho. Typically, Rho promotes termination at the end of coding sequences, but it can also terminate transcription within leader regions to implement regulatory decisions. Rho-dependent termination requires initial recognition of a Rho utilization (rut) site on a nascent RNA by Rho's primary binding surface. However, it i...

متن کامل

Mutant RNA polymerase of Escherichia coli terminates transcription in strains making defective rho factor.

We have isolated a rifampicin-resistant mutant of Escherichia coli RNA polymerase that restores transcription termination in strains with a defective rho protein. In such strains, the mutant RNA polymerase terminates transcription at normally rho-dependent sites at the end of the trp operon, in bacteriophage lambda, and within the lac operon. In addition, a strain with this mutant RNA polymeras...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 140 3  شماره 

صفحات  -

تاریخ انتشار 1995